言葉の機能を下げる

| AUTHORS | 研究所名 | 位置 | 1999年度の研究
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Smith</td>
<td>University of Tokyo</td>
<td>Tokyo</td>
<td>123 Research</td>
</tr>
<tr>
<td>B. Johnson</td>
<td>Osaka University</td>
<td>Osaka</td>
<td>456 Research</td>
</tr>
<tr>
<td>C. Brown</td>
<td>Kyoto University</td>
<td>Kyoto</td>
<td>789 Research</td>
</tr>
</tbody>
</table>
If you can’t DO, SIMULATE

Brownbag Talk

By

Ishan Abeywardena (SST)

17th March 2010
www.ishantalks.com
Today’s discussion

- Introduction to Simulation
- Types of Simulation
- Some benefits of Simulation
- Introduction to Model
- Aspects of a Successful Simulations
- Simulation and Modeling Tools (Arena)
Simulation (What? Why?)

- Simulation involves the modelling of a process or system in such a way that the model mimics the response of an actual system to events that take place over time. (Schriber 1987).

- Simulation is the process of designing a model of a real system and conducting experiments with this model for the purpose of understanding the behaviour of the system and evaluating various strategies for the operation of systems.

- Simulation reflects the behaviour of the real world in a small and simple way.
Classification of Simulation

- Iconic
 Flight or driving simulators,
 NFS / Flight Simulator

- Symbolic
 Symbolic simulation models are those which the properties and characteristics of the real system are captured in mathematical and/or symbolic form.
Symbolic Simulation

- This simulation can include:
 - Detailed information about system components
 - Closely conform to the unique aspects of each system
 - Evaluate time-variant behaviour
 - Provide system specific quantities to measure performance
Applications of Symbolic Simulation

- Manufacturing
- Banks and ATMs
- Transportation/logistics/distribution operation
- Health Services (Hospitals, A&E, Ambulance, etc)
- Computer networks
- Business process (insurance office)
- Chemical plant
- Fast-food restaurant
- Supermarket
- Emergency Services
- Supply chain
Some benefits of Simulation

- Improves decision making with minimal cost
- Compress and expand time (allows speeding up or slowing down specified conditions)
- Reasons behind specific system conditions
- Explore possibilities with minimal expenses
- Diagnose problems (understand the complex interactions between elements of the system)
- Identify system constraints and limitations
- Develop a general understanding of the behaviour of the system
Some more benefits of Simulation

- Visualise the plan
- Build consensus by creating objective opinion
- Prepare for change
- Prudent investment
- Training the project team
- Specify system requirements at design stage
- Capture complexity
Simulation Modeling

- **Model** – set of assumptions/approximations about how the system works
 - Study the model instead of the real system ... usually much easier, faster, cheaper, safer
 - Can try wide-ranging ideas with the model
 - **Model validity** (any kind of model ... not just simulation) Care in building to mimic reality properly
 - **Level of detail**
 - Get same conclusions from the model as you would from system
Principles of Simulation Modelling

- **Conceptualization**: a model requires knowledge, engineering judgment and model building tools

- **Reconfigurable**: models should be accurate and flexible enough to reflect the changes to the system (i.e. updating should be seamless)

- **Evolutionary**: information fed and extracted from the model should represent real system behaviour

- **Problem statement as controlling factor**: problem formulation and objective definition

- **Dynamism**: Dynamic systems change in time the model should be capable of reflecting system dynamics
Aspects of a Successful Simulation

- **Problem definition**: Clearly defining the goals of the study. (why are we studying this problem and what questions do we hope to answer).

- **Project planning**: being sure that we have the sufficient resources to do the job.

- **System definition**: determining the boundaries and restrictions to be used in defining the system (or process) and investigating how the system works.

- **Conceptual model formulation**: developing a preliminary model either graphically (e.g. block diagram) to define the components, descriptive variables, and interactions (logic) that constitutes the system.
Aspects of a Successful Simulation contd...

- **Preliminary experimental design**: what data need to be gathered from the model, in what form, and to what extent.

- **Input data preparation**: identifying and collecting the data required by the model.

- **Model translation**: formatting the model in an appropriate simulation language.

- **Verification and validation**: confirming that the model operates the way the analyst intended (debugging) and that the output of the model is believable and represents the output of the real system.
Aspects of a Successful Simulation contd…

- **Final experiment design**: designing an experiment that will yield the desired information and determining how each of the test runs.

- **Experimentation**: executing the simulation to generate the desired data and perform a sensitivity analysis.

- **Analysis & interpretation**: drawing inferences from the data generated by the simulation.

- **Implementation and documentation**: putting the results to use, recording the findings, and documenting the model and its use.
Simulation Tools: Arena

www.arenasimulation.com

Provides an integrated framework for building simulation models in a wide variety of applications. It integrates all the functions needed for a successful simulation including:

- 1) animation
- 2) analysis of inputs and outputs data
- 3) model verification

into one comprehensive environment.
Arena Hierarchical Structure

- **User-Created Templates**
 - Commonly used constructs
 - Company-specific processes
 - Company-specific templates etc.

- **Application Solution Templates**
 - Contact Centers
 - Packaging Lines
 - etc.

- **Basic Process Panel**
 - Many common modeling constructs
 - Very accessible, easy to use
 - Reasonable flexibility

- **Advanced Process, Advanced Transfer Panels**
 - Access to more detailed modeling for greater flexibility

- **Blocks, Elements Panels**
 - All the flexibility of the SIMAN simulation language

- **User-Written Visual Basic, C/C++ Code**
 - The ultimate in flexibility
 - C/C++ requires compiler

A single graphical user interface consistent at any level of modeling
Basic Components of Arena

- **Queues**: Explains waiting status of entities due to the status of the system.

- **Transporters**: Entities move in the system via transporters.

- **Conveyors**: Conveyors are devices that move entities from one station to another in one direction.

- **Variables**: Represent values that describe the characteristics of the system.

- **Statistical accumulators**: Variables that “watch” what’s happening
 - Depend on output performance measures desired
 - “Passive” in model — don’t participate, just watch
 - Many are automatic in Arena, but some you may have to set up and maintain during the simulation
 - At end of simulation, used to compute final output performance measures
Example

- The A&E of Hillingdon Hospital, UK

- This is a simulation model designed using live data from the A&E of Hillingdon hospital to identify whether the patients are being attended to efficiently by the staff on hand at any given time.

- Model by Dr. Alexander Komashie – Cambridge University, UK
Thanks!

- **Special Thanks to**
 - Dr. Alireza Mousavi – Brunel University, UK
 - Dr. Alexander Komashie – Cambridge University, UK

- **References**

 A. Mousavi, A. Komashie, A. Moeen Taghavi, and V. Pezeshki (2006); *Introduction to Simulation Modelling and Value Chains*; Course Book.

