Mobile Agents Approach in Mobile Learning Environment – ACID Mobile Transaction

Sheng-Hung, Chung
School of Science and Technology,
Wawasan Open University, 10050 Penang, Malaysia.
shchung@wou.edu.my

Abstract
This paper describes the architecture of using the Mobile Agent and ACID (Atomicity, Consistency, Isolation and Durability) in mLearning (Mobile Learning). In the coming years, there was an incremental amount of mobile learning experiments for the purpose of implementing mobile ICTs into mainstream education. In this article, the Replication Agent and Snapshot Agent architecture is proposed as an effective way to overcome the problem of heavy loading on the limited bandwidth is used in wireless transmission for mobile learning environment. The implementation of mobile agents as middleware for mLearning environment is to provide database replication between learners and off-site database e.g. Knowledge Management Centre’s (KMC) databases using handheld devices. The approach using the combination of both these agents plays an important role in wireless transmission. It provides an intelligent solution to the limitation of the wireless bandwidth by lowering the bandwidth taken up during the bursts of mobile transactions. In this proposed technique, a mLearning database is determined as a Snapshot publisher where a compact edition of files and information is generated at the snapshot location which resides on the central database server. Learners may retrieve quick bursts of information through mobile applications wirelessly. The Replication Agent offers the flexibility to move from one site (user) to another (central database) for essential data synchronization. In order to provide learners with appropriate courses, a prototype on mLearning platform supporting three-layered structure and device adapting was put forward. The architecture of the platform was discussed in this study as the mobile agent approach would facilitate more widespread use of mLearning, including in courses discussions between learners and academicians.

Introduction
In the coming years, where more people favor cell phones than PCs, there is potential for a booming market in (mLearning) Mobile Learning. Mobile agents act as middleware for mLearning, where many sophisticated courses databases may allow providers to charge for byte-sized transmissions. Mobile agents are introduced into the wireless telecommunications technology to provide, enhance and expedite learning management services, by accessing off-site databases, linking universities or libraries to handheld devices. There has been much interest recently in developing the mobile computing environment for applications of mLearning, to solve complicated information processing problems, such as downloading course materials, viewing announcements at other sites via mLearning applications.

The Replication agent is a process that is able to move from one machine to another by its own initiative, which could “spawn” and delegate to perform a task independently if the program is launched within a network. The Replication agent is goal-oriented and meets the requirements of the ACID (Atomicity, Consistency, Isolation and Durability) properties [1]. In the mobile computing environment, there will potentially be a large number of e-Learning users accessing the global course data simultaneously. Replication Agent is used to replicate mass information using a Snapshot of the database. By using a Replication Agent, useful medical information can be filtered and downloaded in real-time through the Snapshot publication access list.
In this proposed technique, an LMS (Learning Management System) central database is determined as a Snapshot publisher where a compact edition of files and information is generated at the snapshot location which resides on the central database server. Users may retrieve quick bursts of information through mobile applications wirelessly. In this case, the Replication Agent offers the flexibility to move from one site (user) to another (central database) for essential data synchronization. Upon disconnection or handover in the mobile transaction processing, learners may still update and access the data as well as perform their work, studies and research on their handheld devices. The Replication agent will identify WiFi connectivity and replicates the updated data to the central server, and continues to operate even after the machine that launched it has been removed from the network. Thus, the integration of the Replication Agent and Snapshot Agent in mobile learning truly minimizes the load on the wireless network and enhances transaction processing in handheld databases.

**Replication Agent**

Replication Agent is the process whereby student or courses system data table is copied between databases on the same server or different servers connected by LANs, WANs, or the Internet. The model is composed of the following components: publisher, distributor, subscribers, publications, articles, and subscriptions. The replication agents to be used in the mobile application environment field that are responsible for copying and moving important data fields between the publisher and subscribers are the Snapshot Agent, Log Reader Agent, Distribution Agent, Queue Reader Agent, and Merge Agent.

A. **Publisher**

The Publisher is a server that makes data available for replication to other servers, acting as a remote central host for all the wireless client connections (e.g. learners). The Publisher can have one or more publications, each representing a logically related set of data. In addition to being the server where the data that is to be replicated is specified, the Publisher also detects which data has changed during transactional replication and maintains information about all publications at that site.

B. **Distributor**

The Distributor is a server that hosts the distribution database and stores history data, transactions records and meta data. The role of the Distributor varies depending on which type of replication is implemented. A remote Distributor is a server that is separate from the Publisher and is configured as a Distributor of replication. A local Distributor is a server that is configured to be both a Publisher and a Distributor of replication.

C. **Subscriber**

Subscribers are servers that receive replicated data. Subscribers subscribe to publications, not to individual articles within a publication, and they subscribe only to the publications that they need. Depending on the type of replication and replication options, the Subscriber could also propagate data changes back to the Publisher.

D. **Publication**

A publication is a collection of one or more articles from one database. This grouping of multiple articles makes it easier to specify a logically related set of data and database objects to be replicated together.

E. **Article**

An article is a table of data, a partition of data, or a database object that is specified for replication. An article can be an entire table, certain columns (using a vertical filter), certain rows (using a horizontal filter), a stored procedure or view definition, the execution of a stored procedure, a view, an indexed view, or a user-defined function.
F. Subscription
A subscription is a request for a copy of data or database objects to be replicated. It defines the what, where and when of a publication to be received. Synchronization or data distribution of a subscription can be requested either by the Publisher (a push subscription) or by the Subscriber (a pull subscription). A publication can support a mixture of push and pull subscriptions.

G. Snapshot Agent
The Snapshot Replication Agent makes snapshot files, stores the snapshot on the Distributor, and records information about the synchronization status in the distribution central database. The Snapshot Agent is used in Snapshot, Transactional and Merge replications.

H. Log Reader Agent
The Log Reader replication agent moves transactions marked for replication from the transaction log on the Publisher to the distribution database. This replication agent is not used in Snapshot replication.

I. Distribution Agent
The Distribution Agent moves the snapshot jobs from the distribution database to Subscribers, and moves all transactions waiting to be distributed to Subscribers. The Distribution Agent is used in Snapshot and Transactional replications.

Implementation of Replication Agent in Snapshot Agent

Merge replication is the most difficult replication type among the current mobile agents in the mobile computing environment [2]. It allows possible autonomous changes to replicated data on the Publisher and Subscriber. With Merge replication, an SQL Server captures all incremental data changes in the source and target databases, and reconciles conflicts according to configured rules or using a custom created resolver. Figure 1 below shows the publication process, where the SQL central database is mapped to a Snapshot publication and replicated into a Compact Edition database on a mobile device. The central database consist of SQL (Structured Query Language) tables, stored procedured, DTS (Data Transformation Services) which is essential for mobile computing environment.

[Diagram: Snapshot Publication Process]

Merge replication is used when there is a need to support autonomous changes of the replicated data on the Publisher and Subscriber. Therefore it is perfect for use with mobile database systems as changes can be made at the subscriber (mobile database) and the changes will be synchronized with the publisher. Data can be updated at the Publisher or any Subscriber. Changes are merged periodically at the Publisher. This supports mobile, occasionally connected Subscribers. Through this approach, data can be updated and downloaded when needed to minimize the ad hoc congestion control in wireless bandwidth. The merge replication process is summarized by Figure 2.
The Snapshot Agent prepares snapshot files containing schema and data of published tables, stores the files in the snapshot folder, and inserts synchronization jobs in the publication database. The Snapshot Agent also creates replication-specific stored procedures, triggers, and system tables.

The role of the Distributor is very limited in merge replication, so implementing the Distributor locally (on the same server as the Publisher) is very common. The distribution database on the Distributor stores history and miscellaneous information about the merge replication transaction process for the database administrator to keep track for the accesses to the central database.

A. Application Logic

Merge replication provides the ability to have the server control much of the application logic, instead of having the logic distributed to the device. The application logic is the design phase that identifies how the database table’s unique key is to be identified [2,3]. For example, ranged identity columns and dynamic horizontal partitions are two key areas where the logic resides on the server and not on the device. This can substantially reduce the amount of code on the device, and allow for application maintenance to be performed on the server rather than on the device.

B. Publisher/Subscriber

In Merge replication, as it is used with an SQL Server CE application, the SQL Server is referred to as the Publisher with one or more defined publications on one or more databases and the SQL Server CE databases are referred to as the Subscribers [2]. Publications are made up of a defined set of tables, columns and filters. These chosen tables are referred to as the Articles of a Publication; and the definition of a subset of a table such as “only columnA, columnB, columnC of TableX” or “only those rows of TableY” where condition equals “xxx” are referred to as filters. The filtered tables are synchronized to the compact edition database to reduce the amount of data published. Fig. 3 depicts the replicated text-based tables from the central database (original size 3.51MB) into mobile database (replicated size 254KB). Similarly, course materials from the central databases may be replicated.

Snapshot publication restricts the columns to be included as part of a snapshot, to be synchronized to the mobile user’s compact database. Snapshots reduce the time taken to propagate data updates to Subscribers, reduce the storage space needed at the Subscriber and limit the data in a publication to data that is needed by the individual Subscribers. Filters allow one to replicate a vertical subset of the table. They can also be dynamic, such as “only rows in the Students table where StudentID equals the learner id of the user performing the synchronization”.

Figure 2: Merge Replication Process
C. Synchronization

Synchronization occurs when Publishers and Subscribers reconnect and changes are propagated between sites, and if necessary, conflicts are detected and resolved [4]. At the time of synchronization, the Merge Agent sends all changed data to the Subscriber. Data flows from the originator of the change to the site that needs to be updated or synchronized.

At the destination database, updates propagated from other sites are merged with existing values according to the conflict detection and resolution rules. A Merge Agent evaluates the arriving and current data values, and any conflicts between the new and old values are resolved automatically based on the default resolver [5]. Changed data values are replicated to other sites and converged with changes made at those sites only when synchronization occurs. Synchronizations can occur minutes, days, or even weeks apart and are defined in the Merge Agent schedule [6]. Data is converged and all sites ultimately end up with the same data values, but for this to happen, all updates need to be stopped and a merge between all sites needs to be performed.

![Figure 3: Replication process from subscribers and publisher](image)

**Conclusion**

Transactions in mobile learning may be managed by using semantic ACID properties but this is not sufficient. This paper described how a Replication Agent and Snapshot Agent may be implemented to reduce the bandwidth limitations of the wireless environment. The approach using the combination of both these agents plays an important role in wireless transmission. It provides an intelligent solution to the limitation of the wireless bandwidth by lowering the bandwidth taken up during the bursts of mobile transactions. It is hoped that such approaches would facilitate more widespread use of mobile mLearning, including in group discussions between learners, course participants and academicians for second opinion and research.

**References**