If you can't do, simulate

URI	L	http://weko.wou.edu.my/?action=repository_uri&
		item_id=437

Brownbag Talk

Ву

Ishan Abeywardena (SST)

17th March 2010

www.ishantalks.com

Today's discussion

- Introduction to Simulation
- Types of Simulation
- Some benefits of Simulation
- Introduction to Model
- Aspects of a Successful Simulations
- Simulation and Modeling Tools (Arena)

Simulation (What? Why?)

- Simulation involves the modelling of a process or system in such a way that the model mimics the response of an actual system to events that take place over time. (Schriber 1987).
- Simulation is the process of designing a model of a real system and conducting experiments with this model for the purpose of understanding the behaviour of the system and evaluating various strategies for the operation of systems.
- Simulation reflects the behaviour of the real world in a small and simple way.

Classification of Simulation

Iconic

Flight or driving simulators,

NFS / Flight Simulator

Symbolic

Symbolic simulation models are those which the properties and characteristics of the real system are captured in mathematical and/or symbolic form.

Symbolic Simulation

- This simulation can include:
 - Detailed information about system components
 - Closely conform to the unique aspects of each system
 - Evaluate time-variant behaviour
 - Provide system specific quantities to measure performance

Applications of Symbolic Simulation

- Manufacturing
- Banks and ATMs
- Transportation/logistics/distribution operation
- Health Services (Hospitals, A&E, Ambulance, etc)
- Computer networks
- Business process (insurance office)
- Chemical plant
- Fast-food restaurant
- Supermarket
- Emergency Services
- Supply chain

Some benefits of Simulation

- Improves decision making with minimal cost
- Compress and expand time (allows speeding up or slowing down specified conditions)
- Reasons behind specific system conditions
- Explore possibilities with minimal expenses
- Diagnose problems (understand the complex interactions between elements of the system)
- Identify system constraints and limitations
- Develop a general understanding of the behaviour of the system

Some more benefits of Simulation

- Visualise the plan
- Build consensus by creating objective opinion
- Prepare for change
- Prudent investment
- Training the project team
- Specify system requirements at design stage
- Capture complexity

Simulation Modeling

- Model set of assumptions/approximations about how the system works
 - Study the model instead of the real system ... usually much easier, faster, cheaper, safer
 - Can try wide-ranging ideas with the model
 - Model validity (any kind of model ... not just simulation) Care in building to mimic reality properly
 - Level of detail
 - Get same conclusions from the model as you would from system

Principles of Simulation Modelling

- Conceptualization: a model requires knowledge, engineering judgment and model building tools
- Reconfigurable: models should be accurate and flexible enough to reflect the changes to the system (i.e. updating should be seamless)
- Evolutionary: information fed and extracted from the model should represent real system behaviour
- Problem statement as controlling factor: problem formulation and objective definition
- Dynamism: Dynamic systems change in time the model should be capable of reflecting system dynamics

Aspects of a Successful Simulation

- Problem definition: Clearly defining the goals of the study. (why are we studying this problem and what questions do we hope to answer).
- Project planning: being sure that we have the sufficient resources to do the job.
- System definition: determining the boundaries and restrictions to be used in defining the system (or process) and investigating how the system works.
- Conceptual model formulation: developing a preliminary model either graphically (e.g. block diagram) to define the components, descriptive variables, and interactions (logic) that constitutes the system.

Aspects of a Successful Simulation contd...

- Preliminary experimental design: what data need to be gathered from the model, in what form, and to what extent.
- Input data preparation: identifying and collecting the data required by the model.
- Model translation: formatting the model in an appropriate simulation language.
- Verification and validation: confirming that the model operates the way the analyst intended (debugging) and that the output of the model is believable and represents the output of the real system.

Aspects of a Successful Simulation contd...

- Final experiment design: designing an experiment that will yield the desired information and determining how each of the test runs.
- Experimentation: executing the simulation to generate the desired data and perform a sensitivity analysis.
- Analysis & interpretation: drawing inferences from the data generated by the simulation.
- Implementation and documentation: putting the results to use, recording the findings, and documenting the model and its use.

Simulation Tools: Arena

www.arenasimulation.com

Provides an integrated framework for building simulation models in a wide variety of applications. It integrates all the functions needed for a successful simulation including:

- 1) animation
- 2) analysis of inputs and outputs data
- 3) model verification

into one comprehensive environment.

Arena Hierarchical Structure

Basic Components of Arena

- Queues : explains waiting status of entities due to the status of the system.
- Transporters : Entities move in the system via transporters.
- Conveyors: Conveyors are devices that move entities form one station to another in one direction.
- Variables : Represent values that describe the characteristics of the system.
- Statistical accumulators: Variables that "watch" what's happening
 - Depend on output performance measures desired
 - "Passive" in model don't participate, just watch
 - Many are automatic in Arena, but some you may have to set up and maintain during the simulation
 - At end of simulation, used to compute final output performance measures

Example

- The A&E of Hillingdon Hospital, UK
 - This is a simulation model designed using live data from the A&E of Hillingdon hospital to identify whether the patients are being attended to efficiently by the staff on hand at any given time.
 - Model by Dr. Alexander Komashie Cambridge University, UK

Thanks!

Special Thanks to

- Dr. Alireza Mousavi Brunel University, UK
- Dr. Alexander Komashie Cambridge University, UK

References

- D. Kelton, R. Sadowski and D. Sturrock (2004), Simulation with Arena 3rd Edition, McGraw-Hill
- A. Mousavi, A. Komashie, A. Moeen Taghavi, and V. Pezeshki (2006); Introduction to Simulation Modelling and Value Chains; Course Book.
- R. G. Askin and C. R. Standridge (1993); Modelling and Analysis of Manufacturing Systems; John Wiley & Sons, Inc.
- M. P. Groover (2001); Automation, Production Systems, and Computer Integrated Manufacturing; Second Edition; International Edition; Prentice Hall International, Inc.